
Developers Review 14 Issue 11, August 1999

DELPHI 5

Borland Delphi 5
Reviewed by Brian Long

No doubt many Delphi developers
will be hoping that this new ver-

sion release from Inprise will be leaps
and bounds ahead of Delphi 4 in the
stability stakes. Well, the developers at
Inprise are certainly very aware of the
mistakes that were made with version
4 and have been striving very hard to
ensure the same problems do not
beset this new release.

As far as they are concerned, Delphi
4 went too far too soon, and so it was
not possible to iron out all the stability
issues by the time the product was
released. With version 5 they are said
to be focusing on stability rather than
packing limitless new features into the
box. That said, the set of features
includes a number of things that make
me very happy. The fact that Delphi 5
was originally scheduled for a June

release and has been given
an extra month or so in devel-
opment and testing gives me
hope.

Of course, as with other
products of the same ilk,
Delphi 5 is a superset of its
predecessor. Version 5 has
all that was supplied with
Delphi 4 and more besides.
For information about what
was on offer in Delphi 4,
check the review that appeared in
Developers Review Issue 5, August
1998 (which you can also find on our
website in the Reviews Online section).
This review will focus on what is new.
The information presented here is
based upon pre-release software and
so there may be some changes by the
time the product gets into the box.

One point to get straight before we
start is that the Java Byte Code compi-
lation support that was demonstrated
at the Inprise Developer’s Conference
in 1998 is not in Delphi 5, so if you were
getting all excited, preparing to read all
about the Delphi/Java marriage, well,
sorry. What can I say? Maybe in the
next version? On the other hand,
maybe they decided it wasn’t feasible,
or maybe wasn’t a good idea.

So what strikes you as you load up
the new version? The IDE has had
another facial, and in certain respects
looks a little more like Visual Basic .

Object Inspector
The primary visual difference is with
the Object Inspector. If you need to
expand an expandable property, one
click on the white-looking + will do it,
rather than having to double click the
property name. Also, more impor-
tantly, properties that have an obvious
visual implication now show what they
are. For example the Cursor property
and the Color property (see Figure1).

Another welcome arrival is the con-
cept of property and event categories.
Delphi 4’s component set meant that,
for most components, there were a lot
of properties and events on the Object
Inspector, many of which the average
developer would never touch. Now,
properties and events are categorised
and you can elect to hide or display
properties from whichever categories
you choose. You can also ask the
Object Inspector to list the categories
out as expandable top-level entries.
This means that you can omit all the
irrelevant properties that camouflage
the important ones that you tend to
work with. If any properties are
hidden, the Object Inspector’s status
bar tells you how many, as shown at
the bottom of Figure 2. Of course, you
can disable category display if you
wish, as was done for Figure 1.

All this means a richer development
environment for those creating com-
ponents with customised property edi-
tors, as they can now ensure the
properties are displayed in whatever
fashion makes most sense. Of course,
it also means the Object Inspector is a
little less overwhelming, and a little
friendlier.

Forms And The Form Designer
To help version control systems deal
with forms in a more simplistic
manner, the form designer now stores

◆ Figure 1: Properties with visual
implications are now clearer.

Issue 11, August 1999 15 Developers Review

DELPHI 5

◆ Figure 2: The Object
Inspector’s category
system on display.

forms in text format. In other words,
.DFM files are textual by default. To
store a form in binary, right click on it
and uncheck the Text DFM item. To
store forms as binary by default, the
Preferences page of the Environment

Options... dialog has a New forms as

text checkbox, which can be
unchecked. The VCL’s support for
translating between binary .DFM files
and their textual equivalent has been
extended to support this.

Another form-related change is
another option on the same dialog
page. Auto create forms is checked
by default. This matches the behaviour
of earlier versions of Delphi, where
each new form is auto-created by
default. You can uncheck this option to
cause any new forms to not be
auto-created, meaning you have to
take charge of creating the relevant
form instance when the program
requires access to a form. If a form

should be auto-created, but this option
is not set, you can still use the Forms

page of the Project Options dialog to
toggle this.

Mention should be made of one
other change in the IDE that will prove
very popular and, frankly, is well over-
due. At last, dialogs that require direc-
tories to be entered give you the
option of browsing to the relevant
directory. No longer will you have to
type in colossal path names and simply
hope you got them right [or cut and
paste them from a DOS box command
line prompt! Ed].

Desktops
A great new feature is the concept of
global desktops (as opposed to project
desktops). Once you have organised
the IDE windows the way you want
them, you can store them as a new
desktop through an entry on the View

menu. The information stored in a
desktop includes which windows are
visible, where they are, and who they
may be docked with. Also, the selected
page of the Object Inspector, and avail-
able property categories are recorded,
along with the entire state of all the
speedbars.

To load up a specific desktop layout,
go to the View menu again, or better
still, use the combobox on the new
Desktops speedbar on the main Delphi

window (see Figure 3). When
you need to do some
debugging, you can switch from
your normal desktop to the
debugging desktop (which
could well have all the standard
debugging windows docked
into the maximised editor, for
example).

In fact, out of all the desktops
you set up (which are stored as
.DST files in the BIN directory)
you can specify which one is
your debugging desktop. Then,

as soon as you start debugging a pro-
ject, the debugging desktop is loaded.

Project Manager
The Project Manager has had a few
changes. When working with a project
group, you can switch between pro-
jects using the drop down selector at
the top of the Project Manager. You
can also now copy and paste files
between projects. Additionally, files
can be dragged into projects from
Windows Explorer.

Resource script files (.RC files) can
be added to a project and will be com-
piled to .RES files from within the IDE,
rather than requiring external compi-
lation as before.

Project Browser
The old Object Browser, (practically
untouched since Delphi 1) has had a
facelift. Figure 4 shows it displaying
one of the sample projects. For start-
ers, if the project has not been com-
piled, the Project Browser (as it is now
called) will compile it when it is
invoked. The Object Browser simply
refused to make itself available. You
can choose whether the browser will
work just on symbols from within your
project, or across the whole VCL. You
can also customise the way the items
within a given class or are displayed in
the tree view on the right (or indeed
whether the tree view details section is
displayed at all).

Double clicking on a symbol in this
new browser opens a new window,
with tabs available as appropriate. If
you double click a class, you get scope
(what’s inside it) and references
(which source lines refer to it) pages,
whereas double clicking a class
member gives just a references page.

Figure 4 shows that you can still
browse through global symbols and
units as well as classes. One nice addi-
tion to the unit browser is information

◆ Figure 3: You can choose customised global desktop layouts.

◆ Figure 4: Using the Project Browser.

Developers Review 16 Issue 11, August 1999

DELPHI 5

on which units the selected one is used
by.

Code Editor
Delphi 4 transferred the debugger
options from Tools | Environment

Options... to the new Debugger

Options... dialog under the Tools

menu. Delphi 5 does the same thing
with the large number of editor
options. Tools | Editor Options...

produces a five page dialog (also pro-
duced by right clicking in the editor
and choosing Properties). Four of
these pages will be familiar to Delphi 3
and 4 users, but the available editor
keystroke mappings have now been
given their own page.

A notable addition to the list of key-
stroke mappings is Visual Studio

emulation (recently added to Borland
C++Builder 4). Also in the list is New IDE

Classic. This is a custom keystroke
mapping, implemented in an editor
enhancement module. The Open Tools
API has been extended to include
editor enhancement modules, which
either can provide a complete key-
stroke mapping, or can customise indi-
vidual keystrokes (independent of
active keystroke mapping).

A sample enhancement module pro-
ject is supplied, and indeed is
pre-installed into Delphi 5. This demo
does two things. Firstly, it adds a new
keystroke mapping called New IDE

Classic. It also customises Ctrl+B to
invoke a buffer list (in any keystroke
mapping).

The Language And VCL
As a novelty, the underlying Delphi
language has not really been added to
or changed at all this release. The only
thing worth mentioning is that the
System unit contains a few LOCK

machine instructions to ensure that
reference-counted strings and
dynamic arrays are now thread-safe
when being read from and when used
as parameters.

To match the release version, the
Visual Component Library now
reaches version 5 (the compiler itself
is version 13, and so we have a VER130

conditional define available). New

things to look out for include the
following.

The well known problem of the main
form not animating when minimised or
restored has been fixed. Because of the
internal make-up of a VCL application,
Delphi 2, 3 and 4 simply hid all forms
when the main form was minimised.
The actual task bar icon was the mini-
mised version of the Application

object’s window. This all meant that,
unlike most Windows applications,
you did not see the standard animation
of the main form minimising itself to
the task bar. This long term irritation
has now, thankfully, been fixed.

Events of the Application object
can be set up automatically using the
new TApplicationEvents component.
This surfaces all the events of the
Application object and you can
therefore make the Object Inspector
responsible for implementing the
basic event handler skeletons. Each
form can have an ApplicationEvents

component placed on it, and when the
relevant event of Application is trig-
gered, the corresponding event of
each ApplicationEvents executes in
turn.

You can ensure one particular
ApplicationEvents executes its event
before any other by calling its Acti-

vatemethod. In fact, it is expected that
the OnActivate event handler for a
form will call that form’s
ApplicationEventsActivatemethod,
to make it the first one. To stop any
more ApplicationEvents compo-
nents executing their event handlers,

the component has a CancelDispatch

method.
The TAppletApplication class has

been introduced to allow you to make a
Control Panel project (.CPL file) with
as many Control Panel applets
(TAppletModules) inside as you like.
You can access these classes from the
File | New... dialog, and so can add
many extra items into the Control
Panel from either one or more .CPL

files.
There are facilities for doing custom

drawing in a TToolBar, and reordering
the headers in a THeaderControl. The
TListView class has had some work
done to it. It now supports work areas,
images for sub-items when set to
report style, and InfoTip (or help hint)
support on all items in the list view.

There are more standard actions to
add into your action lists, including
more edit-related actions (delete,
undo, select all) along with some help
actions (contents, help on help and
topic search).

When writing web applications, web
action items have a Producer property
so you can have the content of
response messages automatically
updated when the action item
executes.

Inside the new unit Contnrs unit,
you will find a number of useful
container classes. TObjectList,
TComponentList and TClassList are
based upon the normal TList, with a
few extra methods and properties.
Basically, these are type-safe wrappers
around TList to help you easily store

No really, we’re confident the users are going to love it.

Developers Review 18 Issue 11, August 1999

DELPHI 5

object references (TObjectList), com-
ponent references (TComponentList)
and class references (TClassList).
TObjectList can be told to own the
objects place in it, and
TComponentList can pick up on com-
ponents being destroyed and update
itself.

The TStack class is also based upon
a TList, with TObjectStack inheriting
from it, and then TQueue is a descen-
dant of TStack, with TObjectQueue

inheriting from it.
One minor routine that has been

added is called FreeAndNil. This takes
an object reference variable as its sole
parameter, destroys the object and
resets the reference to nil. So what
historically has involved two state-
ments can now be reduced to one
procedure call.

Frames
There have been techniques available
for years that allow you to design a
form and then embed that form within
another, maybe as a page in a page con-
trol, for example. These days, this
involves constructing the form using
the CreateParented constructor,
which means having to do things
programmatically.

For an alternative and potentially
easier way to re-use forms within other
forms, we can now design things called
frames. A frame could be considered a
reusable section of a form, designed in
isolation. You make one with File |

New Frame, or by choosing a Frame

from the File | New... dialog. This
allows you to design a TFrame descen-
dant much as you would design a form.

When you want to use one of your
frames, you pick it from the compo-
nent palette like any other real compo-
nent. The Frames ‘component’ can be
found on the Standard page of the
component palette. Unlike component

templates (a recorded col-
lection of related objects
that are duplicated when
used), frames are not indi-
vidually listed on their own
palette page. Instead, when
you pick the Frames compo-
nent, you get a list of the
available frames in this pro-
ject. As soon as you choose one, the
frame is embedded in your form. You
can then manipulate the frame itself, or
the objects within the frame.

A frame represents a convenient
way to create proper compound com-
ponents, components made from
many other components. Just place
the constituent components on a
frame, set their properties, implement
their event handlers, and away you go.
When the frame is placed on a form,
each individual constituent compo-
nent can be customised, moved etc,
but not deleted (you get a rejection
error message if you try).

When you place a frame on a form,
you are creating an instance of the
underlying frame class type. This
means that any changes to the original
frame are immediately reflected on the
form. In addition, just as with form
inheritance, any property changes
made to the frame instance will over-
ride the properties of the original. You
can extend the functionality of the
frame’s components by making event
handlers for them on the form. These
event handlers default to initially call-
ing the corresponding method from
the frame class. You can either add
extra code, or replace this call with
your own code.

It’s difficult to show this concept
without sitting in front of you and

going through an example, but Figure 5
shows a directory browsing frame
having been developed and subse-
quently used on an image browsing
form. The file list on the frame has an
event handler hooked up to its
OnChange event. The file list (from the
frame) on the form also has an
OnChange event handler set up. You
should be able to see the call to the
original handler in the editor.

To-Do List
Delphi now supports project to-do
lists. To-do list items can be pro-
ject-wide, or can relate to an individual
source file. You can view the to-do list
by choosing View | To-Do List and it
pops up a window which, like most of
the other IDE windows, can be docked
into the editor (see Figure 6).

New items for the to-do list can be
added directly into the window, and
are stored in a .TODO file with the same
name as your project. However, you
can also add entries by right clicking
and choosing Add To-Do Item

(Shift+Ctrl+T). This gives a dialog,
which ultimately inserts a special com-
ment into your source file. The com-
ment specifies whether the item is still
to do, or done. It also indicates a
priority between 1 and 5, the owner,
category and text of the item, for
example:

{ TODO 1 -oBLong -cStop-ship :

Fix the Access Violation

problem in this routine }

This indicates a high-priority to-do
item entered by BLong in the
Stop-ship category, relating to an

◆ Figure 5: Frames can be
embedded into forms: easy
compound components.

◆ Figure 6: A Delphi 4 project loaded into Delphi 5 with some things still to do.

Issue 11, August 1999 19 Developers Review

DELPHI 5

Access Violation. As soon as you type
one of these to-do comments into your
source, it makes its way straight into
the to-do list. When a to-do item has
been completed, the window draws a
line through it to highlight this fact. In
addition, if you have a to-do item in a
file that is part of the current project,
but which is not open, it will be drawn
grey in the list.

Double clicking a source code to-do
item in this window takes you to the
comment in the relevant source file.
The list distinguishes between pro-
ject-based to-do items and
source-based to-do items by using dif-
ferent bitmaps in the list window
(again, see Figure 6). The To-do list can
be sorted by any column, by clicking
on the column header, or using the
right click menu.

You can copy the To-do list onto the
clipboard in either standard text
format, or as an HTML table, whose
various attributes you can customise
(Figure 7).

Debugging
To accompany the CPU window view
of the program’s machine code, stack,
memory and CPU registers, you now
have the option of an FPU window.
This shows the state of the float-
ing-point unit and displays either
floating-point information, or MMX
information.

The IDE supports some drag and
drop operations during a debugging
session. You can drag any expression
from the editor into a watch list. This
adds a watch on that expression. You
can also drag an expression to an
inspector, to conveniently inspect it.
Finally, you can drag an expression to
the dump or stack pane of the CPU
window, which causes them to locate
to the address of the expression.

The Runmenu has an extra item with
respect to program stepping, called
Run Until Return (Shift+F8) which
will execute a subroutine and stop
when it returns to its caller. This can be
very useful when you step into a long
routine by accident, having intended
to step over it.

Another entry on the Run menu is
Attach to Process..., which was
available in Delphi 4 through an undoc-
umented registry entry. This allows
you to attach to an externally running
application and then proceed with
debugging it.

The Evaluate/Modify dialog now
has extra convenience speedbuttons

that allow you to take the current
expression being evaluated and either
make a watch expression from it, or
load it into an inspector. Another
watch-related convenience is the abil-
ity to ask the watch window to launch a
debug inspector for the highlighted
watch expression.

When using the modules window to
see the modules loaded into the cur-
rent process address space, if a
module is selected, all its entry points
can now be listed either by name or by
address.

The breakpoint properties dialog
(Figure 8) has more options now,
thanks to a new Advanced area. You
can tell the breakpoint not to break,
but to simply log itself in the event log.
Additionally you can have an expres-
sion evaluated every time the break-
point is hit which might be to use
handy if you have subroutines that
produce side-effects, and you can elect
to log the value of an expression as
well.

Breakpoints can now also be allo-
cated a group, and the action of one

◆ Figure 7: A to-do list exported to HTML.

◆ Figure 8: Breakpoints don’t have to
‘break’ the program.

◆ Figure 9: Breakpoint details visible in a tooltip.

Developers Review 20 Issue 11, August 1999

DELPHI 5

breakpoint can be to enable or disable
a whole group of other breakpoints.

Breakpoint properties are now avail-
able by right-clicking the red circle
that represents the breakpoint in the
editor’s left-hand gutter region. Also,
pausing your mouse over the circle will
show you the main properties in a
tooltip (Figure 9).

In the debugger options dialog,
there are new checkboxes to allow you
to debug any processes launched by
your application, to allow side effects
in the evaluation of expressions in the
watch window, and to disable the auto-
matic use of multiple evaluators. When
debugging multi-process applications,
which may be written in different lan-
guages (say C++ and Delphi), Delphi
will, by default, use the appropriate
expression evaluator for the language
used to build the program currently
under the eyes of the debugger.

There are additional entries in the
list of exceptions that you can choose
Delphi to ignore. These include excep-
tions coming from Microsoft’s ADO
libraries, internal VisiBroker excep-
tions along with CORBA system and
user exceptions.

Whilst debugging, particularly with
multi-process debugging, you can
right click on a process in the thread
window and set temporary debugging
options for that individual process
with a copy of the debugger options
dialog.

COM/ActiveX
From the ActiveX tab of File | New...

you can now make an Active Server
object. This is an Automation object
that can be accessed from an Active
Server Page (ASP) on an IIS Web server
and which can access the various
interfaces representing the user
request, response, server and so on.
When you ask for an Active Server
object, the wizard offers you the
option of having a simple ASP test
script generated.

When asking Delphi 4 to make a new
(non-Automation) COM object with
type library support in an application,
the supplied Wizard would happily
oblige. However, the generated type

library OLE Automation flag would be
unchecked by default. Now this may
sound sensible, since you are not
asking for an Automation object, but
wasn’t. Basically the idea is that if that
flag is not set, it is down to the COM
programmer to write all the marshal-
ing code to get data in and out of the
COM server, not a pleasant task at all.

Delphi 4 users found that client
applications would report being
unable to talk to the COM object’s
interfaces, getting the error: Interface
not supported. Not really knowing what
the problem was, they would give up,
or use a more heavyweight Automa-
tion object instead. Delphi 5’s COM
object wizard helps out by asking if
you want this option checked, and
defaults to doing so. It also now
defaults to offering type library sup-
port, which you can uncheck if you
want.

Another change is that when devel-
oping COM/Automation objects and
the type library editor wants to refresh
the underlying implementation
source, you get an updates dialog
showing you what is about to be done.
This gives you the opportunity to veto
some of the proposed changes (see
Figure 10).

When importing type libraries in
Delphi 5, you now have the opportu-
nity of installing COM servers as com-
ponents onto the component palette.
The component will surface any Auto-
mation events of the server onto the
Events page of the Object Inspector,
spectacularly simplifying the job of
responding to server events. All the
available properties of the server will
be available at runtime, though they
are not listed on the Object Inspector.

This componentising of Automation
servers is a good progression of the
limited event support added in Delphi
4. A whole bunch of Microsoft Office
servers are pre-installed on the
Servers page of the component pal-
ette making Office Automation very
easy.

Visual Basic can manufacture Active
Servers and Active Controls with
sparse vtables, ie vtables with gaps in.
These cause problems for Delphi 3 and

4, but Delphi 5 can correctly deal with
the situation. If a sparse vtable is
detected, the type library importer will
add dummy entries in the interface
definition in the import unit.

The are some minor tweaks too. The
COM object factory class
(TComObjectFactory) has been
amended to correctly set the little-
known global CoInitFlags variable for
correct COM free threading support,
without help from the programmer.
COM servers also cater sensibly when
trying to register themselves in the
Windows registry, but without suffi-
cient access rights. Finally, the
HResult COM error type has now
changed back from an unsigned inte-
ger to a signed integer, as it was in
Delphi 3.

CORBA
CORBA developers awaiting the inclu-
sion of an IDL to Pascal translation tool
will be initially disappointed by its
apparent lack of existence. So still,
with the product supplied as is, you
can only access non-Delphi CORBA
servers using slow late-bound
Dynamic Interface Invocation after reg-
istering the IDL file in an Interface
Repository, or by writing the Pascal
stub class by hand.

However, if you need to access
non-Delphi servers all is not lost, as the
Delphi 5 feature set is actually said to
include IDL2PAS. How do these two,
apparently contradictory, statements
pan out? Well, current information

◆ Figure 10: Type Library Editor refresh
can be customised.

Developers Review 22 Issue 11, August 1999

DELPHI 5

suggests that IDL2PAS (or IDL2Delphi,
or whatever it gets called) will be a
downloadable part of the product,
available from the Inprise website.

This decision seems based on the
fact that Inprise are anticipating
making various improvements and
revisions over the coming months and
want to make sure they have a good
avenue of making the updated ver-
sions always available. I would imagine
also that it is taking rather more work
than anticipated, and they have no
desire to hold up release of the main
product, simply because one small
part of it is not quite ready.

The primary in-the-box change with
CORBA support is that Delphi 5 ships
with VisiBroker 3.32 (as shipped with
C++Builder 4). However, network mes-
sage traffic is lessened by the client no
longer pinging the server to maintain a
connection.

Internet
The Internet page on Delphi 4’s com-
ponent palette had 26 components on
it. Delphi 5 shrinks this to just 8. The
NetMasters FastNet suite of compo-
nents now has its own FastNet palette
page. However, their THTML compo-
nent has been removed in favour of
TWebBrowser, which is a wrapper
around the Internet Explorer ActiveX
control (found on the Internet page).

For more information on internet
support, see the InternetExpress
section later.

Database Support
ADO exceptions were mentioned just
above. To quell all those dissident
developers who find the BDE to be too
much of an archaic monolith, the

Delphi developers have bowed to pres-
sure and introduced some native ADO
dataset components. These compo-
nents communicate directly with
Microsoft’s ADO (ActiveX Data
Objects) libraries, bypassing the BDE
completely. These ADO libraries can
be installed from the Delphi CD in case
you do not already have them on your
machine.

The hierarchy of new ADO compo-
nents can be seen in Figure 11, and the
dataset components will connect quite
happily to data source components
and so populate normal Delphi
data-aware controls.

The TADOTable, TADOQuery and
TADOStoredProc components are
plug-in ADO-ready versions of the BDE
TTable, TQuery and TStoredProc com-
ponents. The TADODataSet is a more
generalised object that uses an ADO
RecordSet. It can be used in conjunc-
tion with the TADOCommand for
specialised SQL execution. The
TADOConnection represents a connec-
tion to an ADO database (rather like a
BDE TDataBase component).

Additionally, since ADO knows
about certain specialised field types,
the VCL has the new field components
shown in Table 1.

These new dataset components
have not been designed for effortless
migration of old BDE dataset code. For

example, to re-execute a query with a
TQuery object, you would call the
query’s Close and Open methods. With
TADOQuery, you simply call the
Requery method.

With regard to the more traditional
BDE dataset components, we have a
few changes here as well. The
TDatabase component has an Execute

method to allow an SQL expression to
be executed without using a separate
TQuery component. This method has a
number of optional parameters
defined. These allow you to pass in
SQL parameters, cache the query for
efficient re-execution in the current
transaction, and obtain a cursor to the
result set (so you can give it to an exist-
ing TTable). The method returns the
number of records affected by the
execution of the supplied SQL.

A client dataset has a published
Constraints property, for record-
level constraint enforcement. Also, it
will enforce field level constraints set
up by TField or TCheckConstraint

objects.

Data Module Designer
Since its introduction in Delphi 2, the
data module designer has looked very
dull and simple, like a form designer
with a white background. A lot of atten-
tion has been paid to it for this new ver-
sion. It has been turned into a visual
design tool that makes it easy to
create, document and maintain data
modules. The data module designer
has three areas.

The components view is the same as
the normal data module designer in
previous versions.

The tree view shows the hierarchi-
cal view of the data module’s compo-
nents, such as that between a table and

◆ Figure 11: The ADO support component hierarchy.

◆ Table 1: New ADO field classes.

Field Class ADO Field Description

TWideStringField Fields holding strings of 16-bit Unicode characters

TGuidField Fields storing Globally Unique IDentifiers

TVariantField For Variant fields

TInterfaceField Fields holding interface references

TIDispatchField Fields holding Automation object references

Issue 11, August 1999 23 Developers Review

DELPHI 5

its fields, or between a session and a
database. Components can be dragged
to change their interrelationships, for
example a datasource could be
dragged from one table to another.
You can also add items from the com-
ponent palette directly into the tree
view.

The Data Diagram view is basically a
documentation tool that shows rela-
tionships between components on the
data module. To set up a relationship
you can drag items from the tree view,
and then use special icons to describe
the relationships. If you set up, say, a
master/detail relationship on the Data
Diagram view, then all the pertinent
component properties will be set. You
can set lookup relationships and exam-
ine properties of linked components.
Also, you can add in comment blocks
and define allude relationships (a real
world or commentary linkage between
two things), which has no effect on any
properties. All this extra information is
saved in a .DTI file.

Figure 12 shows a Data Module
designer displaying a few master/
detail relationships.

InterBase Express
In addition to teeChart, QuickReport,
FastNet and the InterBase Event-
Alerter component, Inprise have now
licensed and updated Free IB Compo-
nents. These direct access InterBase
components (in other words, like the
ADO components, they do not use the
BDE) are now referred to as InterBase
Express (IBX). They can be found on
their very own InterBase page of the
component palette and are described
as working with InterBase 5.5 and
higher.

MIDAS
The MIDAS technology allows mid-
dle-tier application servers to commu-
nicate with thin clients around the
network, thereby allowing the devel-
opment of distributed applications.
The connection between the client and
server applications can be through
many protocols.

In addition to the existing connec-
tion objects that support COM, DCOM,

OLEnterprise, CORBA
and sockets, Delphi 5
introduces the
TWebConnection com-
ponent to allow an
HTTP connection to
be used. This means
that it can be used to
connect through a
firewall, and can also
use SSL security. It
exposes properties
for setting up the con-
nection, including
UserName, Password,
URL, Host, Port and Proxy. Remote
data accessed through an HTTP con-
nection can take advantage of
resource pooling.

MIDAS 3, as supplied with Delphi 5,
now directly supports stateless
remote data modules. This means that
you can share remote data modules in
MIDAS servers running within MTS
(Microsoft Transaction Server) with-
out writing a whole lot of support code
to conform to the MTS requirements.
Unfortunately this means some archi-
tectural changes in the MIDAS code,
which ultimately will mean some
changes to your old MIDAS applica-
tions. For example, the IProvider

interface has been removed and
changed to the IAppServer interface.
Correspondingly the client dataset
Providerproperty has gone. There are
a number of other changes that will
need to be borne in mind, but on a
brighter note there are lots of new
BeforeXXX and AfterXXX events in the
client dataset and provider objects.
These allow custom data to be sent
with calls to the server.

InternetExpress And XML
The InternetExpress page of the com-
ponent palette contains components
that enable you to write web server
applications that are MIDAS clients.
The components include a TXMLBroker
and a TMIDASPageProducer. An appro-
priately constructed web server appli-
cation can request from the MIDAS
application server that data packets
are encoded as XML instead of Vari-
ant byte arrays. These XML data

packets can be picked up and inter-
preted by new JavaScript libraries
(also supplied with Delphi 5) to write a
thin client application that will run in a
JavaScript-aware web browser.

You can also use the Internet-
Express components to build non-
MIDAS web server applications, by
including the provider and its dataset
into the web server application itself.

Team Development
Delphi has been able to hook up to ver-
sion control systems since version 1.
The Open Tools API allows DLLs to be
written that interface between the
Delphi IDE and some version control
system. All versions of Delphi have
shipped with a DLL to allow you to
work with Intersolv’s PVCS.

Delphi now ships with a team devel-
opment tool of its own, called
TeamSource. This is not so much a ver-
sion control system as a workflow
management tool. It has been designed
to help development teams manage
their daily tasks within a shared
development environment.

Many version control system tools
work on the basis of allowing one
developer to edit a file at any time, by
locking it and unlocking it, which is the
serial source control model. There is
also a parallel source control model,
where each developer works on a local
copy of shared files. When a developer
finishes work on a file, their changes
must be reconciled with those of other
developers. This means comparing
and spotting differences between the
local version and the master copy of

◆ Figure 12: The new data module designer.

Developers Review 24 Issue 11, August 1999

DELPHI 5

the file and then synchronising the
two. After this reconciliation, the local
copy reflects accepted changes in the
master copy, and the master copy
reflects local changes that were
applied.

TeamSource goes beyond simple
file version control by managing a par-
allel model of source control.
TeamSource actually uses a version
control system to store and retrieve
shared files. Its predefined support is

for PVCS (which you need to buy) and
the simplistic archiver, ZLib (which is
free in the box). Support for other tools
can be introduced by writing custom
TeamSource Extensions (a DLL with a
.TSX file extension).

Delphi 5: A Second Opinion by Dave Jewell, Technical Editor

To my mind, Delphi 3 represented the last major release of
this development system. The huge amount of under-the-
hood change required by the introduction of packages
meant that Delphi 3 was a radically different animal to its
predecessor (remember CMPLIB32.DCL? – if you don’t, then
be glad). Since that time, Delphi 4 and 5 have progressively
built on the Delphi 3 foundation, adding large numbers of
relatively small ‘tweaks’ and functionality enhancements.

Of course, this isn’t to belittle the recent work that
Borland have done, there are many welcome new features
in this release, but I’m especially delighted to hear that sta-
bility is the key emphasis of Delphi 5! I’m particularly enthu-
siastic about the new native ADO components for those
who prefer to dispense with the BDE, the host of Office
Automation components that come pre-installed on the
Delphi 5 component palette and the new Frames facility
mentioned elsewhere by Brian. Truth to tell, I didn’t
embrace Delphi 4 with anything like the enthusiasm that
Borland might have wished, and I don’t believe I was alone.
Up until now, Delphi 3 has remained my de facto develop-
ment system, but with the launch of Delphi 5, I can certainly
see plenty of compelling reasons for an upgrade.

The new Object Inspector certainly has a cleaner ‘look’ to
it. The categorisation changes are a step in the right direc-
tion, but I feel that they don’t go far enough and I think it’s
rather confusing having the same properties appearing in
multiple categories. For example a form’s, Left, Top, Width,
and Height properties all appear in the Localizable,
Layout and Visual categories. I can see why they should,
but I don’t like the fact that they do! Personally, I would
have preferred a more flexible scheme, allowing the devel-
oper to create his or her own categories. I don’t believe this
would be difficult to achieve.

While discussing possible enhancements to Delphi in a
recent interchange on CIX, I commented that it would be
nice to see more source code to the built-in property editors
(this is especially useful for those developers who wish to
create enhanced versions of existing property editors). I was
therefore delighted to see that Borland have now included
the source code to PicEdit and StrEdit with this release of
Delphi. It’s a small start, but it’s a start!

In writing this Second Opinion, the Editor was keen for
me to comment on how Delphi 5 stacks up against other
popular development systems. Well, it should hardly need
stating, but I consider that in terms of ease of use and pro-
grammer productivity, Delphi remains head and shoulders

above Microsoft’s resolutely non-visual Visual C++.
Delphi also wins hands down against Visual Basic, and
always will do until Microsoft gets serious about adding
pointer support to the language, or else creates a
decent application framework for VB that wraps the
underlying Windows API. If you don’t know what I’m
talking about here, just try implementing an
owner-draw listbox in a VB application and you will
soon see how quickly Visual Basic runs out of steam. No
cheating with third-party DLLs or OCX controls is
allowed!

Of course, there is one big chink in Delphi’s armour,
and it’s something that I’ve mentioned in the past. Just
as Microsoft seem determined to keep Visual C++ as
non-visual as possible, Borland likewise could do a lot
more in the area of ActiveX control creation. Rather
than simply providing a conversion process for existing
VCL components, I’d like to see something much more
like the Visual Basic approach. I’d like to be able to visu-
ally lay out a new ActiveX control from scratch, perhaps
making it up from an aggregation of existing OCX or
VCL controls. This is one area in which VB scores heavily
over Delphi. If Delphi could combine the RAD-based
ActiveX creation of VB with the lightweight ATL tech-
nology of Visual C++, then you’d have a matchless
development environment.

Finally, unlike Brian, I’m not disappointed regarding
the lack of Java byte code compilation in Delphi 5. In
fact, I’m deliriously happy at its absence! From my per-
spective, I believe that the sun is beginning to set on the
Java phenomenon. The dust is settling, the hype is
being seen for what it was, hype, and an increasing
number of developers are waking up to the fact that
the only way of getting decent runtime performance
for portable applications is to use native code compilers
and traditional cross-platform development tools.
Quelle surprise! (see my coverage of Qt and XVT in this
month’s Platforms Column). Delphi is, indisputably, the
best development system for general purpose
Windows application development. Let’s keep it that
way, without turning it into some Jack-of-all-trades,
master-of-none monstrosity. If Borland have got any
sense (and I suspect they’ve got a lot more now than
they had six months ago) then they’ll be thinking very
seriously about a Linux port of Delphi... which actually
seems to be just what they are doing right now!

Developers Review 26 Issue 11, August 1999

DELPHI 5

TeamSource has been used, in var-
ious guises and revisions, by the
Borland development teams for over
four years now. It has been used in
teams from just a couple of develop-
ers as well as in teams of up to fifty
developers, and so has stood the test
of time and proven its scalability.

Localisation
Delphi 4’s Resource DLL Wizard now
has some friends to help you with
developing localised applications. The
Integrated Translation Environment
(or ITE) is a set of three tools inte-
grated with the IDE to help manage
development of an application local-
ised for several locales. These tools
are the aforementioned Resource DLL
Wizard, the Translation Manager and
the Translation Repository.

The Resource DLL Wizard has been
improved to support multiple projects
at a time, and choose multiple locales
to have resource DLLs created.

Having made some resource DLLs,
the Translation Manager shows all the
forms, string resources and any other
pertinent files from each resource DLL.
You can translate the individual
resources from within the Translation
Manager, and it shows which items
have yet to be translated. It can also
add or remove resource DLLs by invok-
ing the wizard as needed.

A neat feature of the Translation
Manager is the Active Language, which
lets you run localised versions of your
application under the debugger.

The Translation Repository can be
found on the Toolsmenu. This is a cen-
tralised storage location for transla-
tions that can be shared between
different projects and be accessed by
different developers. The translations
in the repository can be accessed
through the Translation Manager.
Figure 13 shows the Translation Man-
ager retrieving strings from the
repository. The ITE can be tailored to a
certain extent using a new page in the
environment options dialog.

Additional Stuff
Since the reorganisation of Inprise
(What’s that? Déjà vu? I’ve had that

feeling before, you know...) into Inprise
and borland.com, and then into Inprise
and Borland, they seem to have shifted
their focus slightly away from Enter-
prise users and back to the humble
developers again.

Take, for example, the inclusion of
the source for the Decision Cube com-
ponents, which allow you to do
drill-down, pivot-able data analysis
forms. Granted, a number of people
have issues with these components,
but they can be powerful allies in
the fight to make an application
management-friendly.

Another new addition to the
CD-ROM is the old Borland Resource
Workshop, much missed since the
demise of Borland Pascal 7. This old
tool allows you to easily create and
manage string tables, and other stan-
dard Windows resources.

The development environment now
supports a number of documented
command-line switches, some of
which were supported by Delphi 4 in
an undocumented capacity. You can
entice the IDE to keep a constantly
updated log of its memory allocations
on its caption bar (-HM), and also to
report any heap corruption errors
there as well (-HV). The normal splash
screen can be disabled (-NS) and also
the default project can be prohibited
from loading (-NP). Automated makes
(-M) and builds (-B) are supported as
are a number of debugging options.

Product Versions
As usual, the product comes in three
main versions, although like
C++Builder 4, the names have changed
around a bit. We still have the entry
level Standard version, and the
mid-range Professional version. What

used to be called the Client/Server
Suite is now Delphi 5 Enterprise and
the very expensive high-end version
that used to be called the Enterprise
version (to be released later in the
year) is now Delphi 5 for Application
Server.

At the time of writing, pricing
information is unavailable.

Conclusion
I think Delphi 5 is a cracker of a prod-
uct, with lots of new, fun things in it.
But then I enjoy using most versions of
Delphi. So if that makes me a little
biased, perhaps you should check out
the feature set described in this review
and then try the product out for
yourself.

To be honest, customers buying the
Enterprise Version will be getting quite
a lot for their money. If you have the
money for that version and you are
focusing on localised applications, or
database-oriented internet applica-
tions, then you will probably be the
happiest customers. Purchasers of the
Standard and Professional versions
may not have quite so much to shout
about. Details of what is to be included
in each flavour are not fixed as I write,
but there are rumours that the Stan-
dard version may have database sup-
port completely removed. Also, the
Professional version may not ship with
the ADO support, although it may be
available for separate purchase.

Brian Long is an independent consul-
tant and trainer. you can reach him at
brian@blong.com
Copyright © 1999 Brian Long.

All rights reserved.

◆ Figure 13: The Translation Manager.

Subscribing
To Developers Review!
When creating world-beating applications
to tight deadlines it’s essential to have the
right tools to hand.

To ensure you get the most up-to-date information on what software development tools to

use, subscribe to Developers Review now. You’ll receive 6 issues a year containing in-depth

reviews from leading authors, product surveys, ‘first-look’ reviews of new products and new

releases, book reviews, news and much more.

To start receiving your regular copy of Developers Review simply fill out the subscription form

below and send it off by post or fax as indicated. Telephone subscription orders are welcomed

on +44 (0)181 249 0354. For more information visit our website at www.itecuk.com

Developers Review Subscription Request BOS

Please complete this form and post or fax it to:
Developers Review, 9a London Road, BROMLEY, Kent BR1 1BY, United Kingdom

Fax subscriptions to: 0181 249 0376 (UK) +44 181 249 0376 (International)

Payment MUST be included, a receipt will be sent to you. Sorry, NO purchase orders!

Name (Mr/Ms) ___

Position__ Company ___

Address ___

___ City/Town___

County/State ___ Postcode/Zipcode____________________________________

Country__ Email ___

Telephone ___ Fax ___

Subscription (please tick):

❑ United Kingdom £36.00 ❑ Europe £40.00 ❑ Rest of the world £50.00

Note: varying costs reflect postage.

Payment Method (please tick):

❑ Please debit my ❑ Visa ❑ Mastercard ❑ American Express account by £_____________

Card number: __ Expiry date: _____ / _____

Cardholder name:___ Signature:_______________________

Note: Your credit card will be debited by the Sterling amount shown above, converted to your local currency by your credit card company

❑ I enclose a Sterling cheque or bank draft drawn on a United Kingdom bank (ie bank’s address

on the cheque/draft is in the UK), or a Sterling Eurocheque, (PAYABLE TO ITEC PLEASE) for £____________

Sorry, we can’t accept payment by bank transfer or Giro transfer. Please do not send payment in other currencies

	SUBFOR~1.PDF
	Subscribing Information
	Subscription Form

